3.2125 \(\int \frac{(2+3 x)^6}{(1-2 x)^{3/2} (3+5 x)^3} \, dx\)

Optimal. Leaf size=147 \[ \frac{7 (3 x+2)^5}{11 \sqrt{1-2 x} (5 x+3)^2}-\frac{71 \sqrt{1-2 x} (3 x+2)^4}{1210 (5 x+3)^2}-\frac{2721 \sqrt{1-2 x} (3 x+2)^3}{66550 (5 x+3)}+\frac{377748 \sqrt{1-2 x} (3 x+2)^2}{831875}+\frac{63 \sqrt{1-2 x} (831375 x+2492512)}{8318750}-\frac{33873 \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{4159375 \sqrt{55}} \]

[Out]

(377748*Sqrt[1 - 2*x]*(2 + 3*x)^2)/831875 - (71*Sqrt[1 - 2*x]*(2 + 3*x)^4)/(1210*(3 + 5*x)^2) + (7*(2 + 3*x)^5
)/(11*Sqrt[1 - 2*x]*(3 + 5*x)^2) - (2721*Sqrt[1 - 2*x]*(2 + 3*x)^3)/(66550*(3 + 5*x)) + (63*Sqrt[1 - 2*x]*(249
2512 + 831375*x))/8318750 - (33873*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/(4159375*Sqrt[55])

________________________________________________________________________________________

Rubi [A]  time = 0.0512524, antiderivative size = 147, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {98, 149, 153, 147, 63, 206} \[ \frac{7 (3 x+2)^5}{11 \sqrt{1-2 x} (5 x+3)^2}-\frac{71 \sqrt{1-2 x} (3 x+2)^4}{1210 (5 x+3)^2}-\frac{2721 \sqrt{1-2 x} (3 x+2)^3}{66550 (5 x+3)}+\frac{377748 \sqrt{1-2 x} (3 x+2)^2}{831875}+\frac{63 \sqrt{1-2 x} (831375 x+2492512)}{8318750}-\frac{33873 \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{4159375 \sqrt{55}} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x)^6/((1 - 2*x)^(3/2)*(3 + 5*x)^3),x]

[Out]

(377748*Sqrt[1 - 2*x]*(2 + 3*x)^2)/831875 - (71*Sqrt[1 - 2*x]*(2 + 3*x)^4)/(1210*(3 + 5*x)^2) + (7*(2 + 3*x)^5
)/(11*Sqrt[1 - 2*x]*(3 + 5*x)^2) - (2721*Sqrt[1 - 2*x]*(2 + 3*x)^3)/(66550*(3 + 5*x)) + (63*Sqrt[1 - 2*x]*(249
2512 + 831375*x))/8318750 - (33873*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/(4159375*Sqrt[55])

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 149

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[m]

Rule 153

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegerQ[m]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(2+3 x)^6}{(1-2 x)^{3/2} (3+5 x)^3} \, dx &=\frac{7 (2+3 x)^5}{11 \sqrt{1-2 x} (3+5 x)^2}-\frac{1}{11} \int \frac{(2+3 x)^4 (173+312 x)}{\sqrt{1-2 x} (3+5 x)^3} \, dx\\ &=-\frac{71 \sqrt{1-2 x} (2+3 x)^4}{1210 (3+5 x)^2}+\frac{7 (2+3 x)^5}{11 \sqrt{1-2 x} (3+5 x)^2}-\frac{\int \frac{(2+3 x)^3 (12450+21657 x)}{\sqrt{1-2 x} (3+5 x)^2} \, dx}{1210}\\ &=-\frac{71 \sqrt{1-2 x} (2+3 x)^4}{1210 (3+5 x)^2}+\frac{7 (2+3 x)^5}{11 \sqrt{1-2 x} (3+5 x)^2}-\frac{2721 \sqrt{1-2 x} (2+3 x)^3}{66550 (3+5 x)}-\frac{\int \frac{(2+3 x)^2 (446523+755496 x)}{\sqrt{1-2 x} (3+5 x)} \, dx}{66550}\\ &=\frac{377748 \sqrt{1-2 x} (2+3 x)^2}{831875}-\frac{71 \sqrt{1-2 x} (2+3 x)^4}{1210 (3+5 x)^2}+\frac{7 (2+3 x)^5}{11 \sqrt{1-2 x} (3+5 x)^2}-\frac{2721 \sqrt{1-2 x} (2+3 x)^3}{66550 (3+5 x)}+\frac{\int \frac{(-31392102-52376625 x) (2+3 x)}{\sqrt{1-2 x} (3+5 x)} \, dx}{1663750}\\ &=\frac{377748 \sqrt{1-2 x} (2+3 x)^2}{831875}-\frac{71 \sqrt{1-2 x} (2+3 x)^4}{1210 (3+5 x)^2}+\frac{7 (2+3 x)^5}{11 \sqrt{1-2 x} (3+5 x)^2}-\frac{2721 \sqrt{1-2 x} (2+3 x)^3}{66550 (3+5 x)}+\frac{63 \sqrt{1-2 x} (2492512+831375 x)}{8318750}+\frac{33873 \int \frac{1}{\sqrt{1-2 x} (3+5 x)} \, dx}{8318750}\\ &=\frac{377748 \sqrt{1-2 x} (2+3 x)^2}{831875}-\frac{71 \sqrt{1-2 x} (2+3 x)^4}{1210 (3+5 x)^2}+\frac{7 (2+3 x)^5}{11 \sqrt{1-2 x} (3+5 x)^2}-\frac{2721 \sqrt{1-2 x} (2+3 x)^3}{66550 (3+5 x)}+\frac{63 \sqrt{1-2 x} (2492512+831375 x)}{8318750}-\frac{33873 \operatorname{Subst}\left (\int \frac{1}{\frac{11}{2}-\frac{5 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )}{8318750}\\ &=\frac{377748 \sqrt{1-2 x} (2+3 x)^2}{831875}-\frac{71 \sqrt{1-2 x} (2+3 x)^4}{1210 (3+5 x)^2}+\frac{7 (2+3 x)^5}{11 \sqrt{1-2 x} (3+5 x)^2}-\frac{2721 \sqrt{1-2 x} (2+3 x)^3}{66550 (3+5 x)}+\frac{63 \sqrt{1-2 x} (2492512+831375 x)}{8318750}-\frac{33873 \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{4159375 \sqrt{55}}\\ \end{align*}

Mathematica [C]  time = 0.107978, size = 101, normalized size = 0.69 \[ \frac{\frac{13230 \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{5}{11} (1-2 x)\right )}{\sqrt{1-2 x}}-\frac{55 \left (22052250 x^5+129373200 x^4+516610710 x^3+69300960 x^2-377289427 x-154786070\right )}{\sqrt{1-2 x} (5 x+3)^2}-4956 \sqrt{55} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{41593750} \]

Antiderivative was successfully verified.

[In]

Integrate[(2 + 3*x)^6/((1 - 2*x)^(3/2)*(3 + 5*x)^3),x]

[Out]

((-55*(-154786070 - 377289427*x + 69300960*x^2 + 516610710*x^3 + 129373200*x^4 + 22052250*x^5))/(Sqrt[1 - 2*x]
*(3 + 5*x)^2) - 4956*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]] + (13230*Hypergeometric2F1[-1/2, 1, 1/2, (5*(1
 - 2*x))/11])/Sqrt[1 - 2*x])/41593750

________________________________________________________________________________________

Maple [A]  time = 0.011, size = 84, normalized size = 0.6 \begin{align*}{\frac{729}{5000} \left ( 1-2\,x \right ) ^{{\frac{5}{2}}}}-{\frac{8991}{5000} \left ( 1-2\,x \right ) ^{{\frac{3}{2}}}}+{\frac{333639}{25000}\sqrt{1-2\,x}}+{\frac{117649}{10648}{\frac{1}{\sqrt{1-2\,x}}}}+{\frac{2}{166375\, \left ( -10\,x-6 \right ) ^{2}} \left ({\frac{403}{10} \left ( 1-2\,x \right ) ^{{\frac{3}{2}}}}-{\frac{891}{10}\sqrt{1-2\,x}} \right ) }-{\frac{33873\,\sqrt{55}}{228765625}{\it Artanh} \left ({\frac{\sqrt{55}}{11}\sqrt{1-2\,x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^6/(1-2*x)^(3/2)/(3+5*x)^3,x)

[Out]

729/5000*(1-2*x)^(5/2)-8991/5000*(1-2*x)^(3/2)+333639/25000*(1-2*x)^(1/2)+117649/10648/(1-2*x)^(1/2)+2/166375*
(403/10*(1-2*x)^(3/2)-891/10*(1-2*x)^(1/2))/(-10*x-6)^2-33873/228765625*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*5
5^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 2.06202, size = 149, normalized size = 1.01 \begin{align*} \frac{729}{5000} \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} - \frac{8991}{5000} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{33873}{457531250} \, \sqrt{55} \log \left (-\frac{\sqrt{55} - 5 \, \sqrt{-2 \, x + 1}}{\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}}\right ) + \frac{333639}{25000} \, \sqrt{-2 \, x + 1} + \frac{1838268849 \,{\left (2 \, x - 1\right )}^{2} + 16176751756 \, x + 808829747}{6655000 \,{\left (25 \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} - 110 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + 121 \, \sqrt{-2 \, x + 1}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^6/(1-2*x)^(3/2)/(3+5*x)^3,x, algorithm="maxima")

[Out]

729/5000*(-2*x + 1)^(5/2) - 8991/5000*(-2*x + 1)^(3/2) + 33873/457531250*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x
 + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 333639/25000*sqrt(-2*x + 1) + 1/6655000*(1838268849*(2*x - 1)^2 + 1617
6751756*x + 808829747)/(25*(-2*x + 1)^(5/2) - 110*(-2*x + 1)^(3/2) + 121*sqrt(-2*x + 1))

________________________________________________________________________________________

Fricas [A]  time = 1.62173, size = 342, normalized size = 2.33 \begin{align*} \frac{33873 \, \sqrt{55}{\left (50 \, x^{3} + 35 \, x^{2} - 12 \, x - 9\right )} \log \left (\frac{5 \, x + \sqrt{55} \sqrt{-2 \, x + 1} - 8}{5 \, x + 3}\right ) + 55 \,{\left (242574750 \, x^{5} + 1423105200 \, x^{4} + 5682717810 \, x^{3} + 762244410 \, x^{2} - 4150263077 \, x - 1702670584\right )} \sqrt{-2 \, x + 1}}{457531250 \,{\left (50 \, x^{3} + 35 \, x^{2} - 12 \, x - 9\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^6/(1-2*x)^(3/2)/(3+5*x)^3,x, algorithm="fricas")

[Out]

1/457531250*(33873*sqrt(55)*(50*x^3 + 35*x^2 - 12*x - 9)*log((5*x + sqrt(55)*sqrt(-2*x + 1) - 8)/(5*x + 3)) +
55*(242574750*x^5 + 1423105200*x^4 + 5682717810*x^3 + 762244410*x^2 - 4150263077*x - 1702670584)*sqrt(-2*x + 1
))/(50*x^3 + 35*x^2 - 12*x - 9)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**6/(1-2*x)**(3/2)/(3+5*x)**3,x)

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Giac [A]  time = 2.47843, size = 150, normalized size = 1.02 \begin{align*} \frac{729}{5000} \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} - \frac{8991}{5000} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{33873}{457531250} \, \sqrt{55} \log \left (\frac{{\left | -2 \, \sqrt{55} + 10 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}\right )}}\right ) + \frac{333639}{25000} \, \sqrt{-2 \, x + 1} + \frac{117649}{10648 \, \sqrt{-2 \, x + 1}} + \frac{403 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 891 \, \sqrt{-2 \, x + 1}}{3327500 \,{\left (5 \, x + 3\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^6/(1-2*x)^(3/2)/(3+5*x)^3,x, algorithm="giac")

[Out]

729/5000*(2*x - 1)^2*sqrt(-2*x + 1) - 8991/5000*(-2*x + 1)^(3/2) + 33873/457531250*sqrt(55)*log(1/2*abs(-2*sqr
t(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 333639/25000*sqrt(-2*x + 1) + 117649/10648/sqrt(-2
*x + 1) + 1/3327500*(403*(-2*x + 1)^(3/2) - 891*sqrt(-2*x + 1))/(5*x + 3)^2